

1-Fiber Detachable DVI module, DVFX-100

DATA SHEET

Contents

- **♦** Description
- ♦ Features
- Applications
- **♦ Technical Specifications**
- **♦** Functions
- Drawing
- **♦ Fiber Connection**
- DVI Pin Description
- Revision History

OPTICIS HQ

Opticis Co., Ltd. # 16Fl, Kins Tower Jeongja 331, 8 Sungnam-daero, Bundang-gu Sungnam-si, Gyunggi-do, 13558 South Korea Te I: +82 (31) 719-8033

Fax: +82 (31) 719-8032 <u>www.opticis.com</u> tosales@opticis.com

Copyright © 2017, All rights reserved by Opticis

1-Fiber Detachable DVI module, DVFX-100

Description

Optical graphic extension module consists of transmitter module and receiver module, each of which has one (1) SC connectors and a 24-pins DVI-D plug. Users could decide extension length at their discretion by choosing the length of fiber-optic cables with SC ferrules at the ends. It offers graphic TMDS signals to be extensible up to the limits of modal bandwidth of selected multi-mode glass fiber(50/125 um or 62.5/125um).

The module has a capability to transmit 2K resolution graphic signals with 60Hz refresh rate using leadingedge OPTICIS fiber-optic component that transmits four (4) data channels over one multi-mode fiber. At such data bandwidth, this module can extend up to 1,640 feet (500 meters) much over the limits of copper wire extension, without any distribution amplifier or repeater.

The EDID in a display can be read and restored by just plugging it to the display. This self-EDID programming feature makes the installation of DVFX-100 more easy and flexile at any variable resolution display systems.

The modules are constituted of three parts as follows;

- One (1) transmitter converting electrical to optical signals, model name: DVFX-100-T
- One (1) receiver converting optical to electrical signals, model name: DVFX-100-R
- Two (2) AC Adaptors to 110V-240V with DC 5V 1A outlet

Features

- ♦ Extends all VESA resolution up to 2K resolution at 60Hz or 1080p,36bit DVI data up to 500 meters (1,640ft) over one (1) multi-mode fiber
- Detachable feature with a simplex SC connector for each module
- Offers self-EDID programming feature, detecting from a display and restoring to an EEPROM in the transmitter just by plugging to the display without any physical DDC connection
- The modules are compact enough to directly plug to graphic sources and displays by adopting DVIplugs
- ♦ Includes two (2) +5V DC power adapters for the transmitter and receiver
- ♦ Certifications: UL/EN 60601-1, 60601-1-2, CE / FCC, Class 1 Laser Eye Safety
- Data security with negligible RFI/EMI emissions and loss of video quality due to no copper conductor present

Applications

- Medical imaging system
- ♦ Video wall system
- Digital signage
- ♦ Military / Aerospace
- ♦ Broadcast
- ♦ Conference room / Education

Technical Specifications

- General Specifications

	Parameter	Specifications	
Components	Laser Diodes in Tx Module	Multi-mode VCSEL (Vertical Cavity Surface Emitting Laser)	
Componente	Photo Diodes in Rx Module	PIN-PD	
	Input and Output Signals	TMDS Level (complying with DVI1.0)	
Electrical	Data Transfer Rate (Graphic Data)	Max. 2.25Gbps	
Electrical	Total Jitter at the end of Rx output	Max. 309 ps	
	Skew inter-channels	Max. 6ns	
Optical	Link Power Budget	Min 9.4dB	
Mechanical	Module dimension (WDH)	39 x 56 x 14.6mm	
	Optical Connector	Simplex SC connectors	
Connect	Electric Connector Type from Systems and to Displays	24 pin DVI-D plug	
	Recommended Fiber	50/125 um Multi-mode Glass Fiber	

- Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units
Supply Voltage	Vcc	-	+ 7.0	V
Operating Temperature	Top	0	50	°C
Storage Temperature	Ts	- 30	+ 70	°C
Operating Humidity	Hs	10	85	%RH
Storage Relative Humidity	Hs	10	95	%RH

Operating Conditions Transmitter module (E-to-O converter): DVFX-100-TX

	Parameter	Symbol	Minimum	Typical	Maximum	Units
Power Supply	Supply Voltage	Vcc	4.5	5.0	5.5	V
	Supply Current	I _{TCC}	355	395	435	mΑ
dd A	Power Dissipation	P _{TX}	1.6	1.98	2.4	W
er	Power Supply Rejection (Note1)	PSR		50		mV_{p-p}
	Data Output Load	R _{LD}		50		Ω
TMDS	Graphic Supply Voltage (Note2)	GV _{CC}	+ 3.1	+ 3.3	+ 3.5	V
	Single-Ended High Level Input Voltage	GV _{IH}	GV _{CC} - 0.01	GV _{CC}	GV _{CC} + 0.01	V
	Single-Ended Low Level Input Voltage	GV _{IL}	GV _{CC} - 0.6	1	GV _{CC} - 0.4	V
	Single-Ended Input Swing Voltage	GV _{ISWING}	0.4	-	0.6	V
	Output Optical Power (Note 3)	Po	-4		1	dBm
	Wavelength	λ	850		990	nm
수	Spectral width in RMS	Δλ			3	nm
Optical Link (Note3)	Relative Intensity of Noise (Note4)			-20		dB/Hz
	Extinction Ratio Ext		4			dB
_ ×	Rising/Falling Time	T_{rise}/T_{fall}		_	260	ps
	Jitter in p-p value (Note5)	T _{jitter}			260	ps

Note 1. Tested with a $50 \text{mV}_{\text{p-p}}$ sinusoidal signal in the frequency range from 500 Hz to 500 MHz on the V $_{\text{CC}}$ supply with the recommended power supply filter in place. Typically less than a 0.25 dB change in sensitivity is experienced.

Receiver module (O-to-E converter): DVFX-100-RX

	Parameter	Symbol	Minimum	Typical	Maximum	Units
St.	Supply Voltage	Vcc	4.5	5.0	5.5	V
	Supply Current	I _{RCC}	230	270	310	mΑ
Power Supply	Power Dissipation	P _{RX}	1.04	1.35	1.71	W
er	Power Supply Rejection (Note6)	PSR		50		mV_{p-p}
	Data Input Load	R _{LD}		50		Ω
TMDS	Graphic Supply Voltage (Note7)	GV _{CC}	+ 3.1	+ 3.3	+ 3.5	V
	Single-Ended Output Swing Voltage (Note8)	GV _{ISWING}	0.2	-	0.4	V
	Receiving Optical Power	Po	-11		1	dBm
_ o	Receiving Wavelength	λ	850		990	nm
Optical Link (Note9)	Signal_Detect Good	SDg			-15	dBm
	Signal_Detect Fail	SDf	-23			dBm
	Link Power Budget	P _{bgt}	9.45			dB
^	Total Jitter (note 10)	TR _{jitter}			309	ps

Note2. Graphic Supply Voltage is regulated reference voltage for signal processing in modules
Note3. Measure each optical w avelength at the end of 2 meter 50/125um MMGOF
Note4. Measure in 1GHz of frequency bandwidth

Note5. Use PPG (Pulse Pattern Generator) source with jitter 50ps

Note6. Tested with a 50mV_{p-p} sinusoidal signal in the frequency range from 500 Hz to 500 MHz on the V_{CC} supply with the recommended power supply filter in place. Typically less than a 0.25 dB change in sensitivity is experienced.

Note7. Graphic Supply Voltage is regulated reference voltage for signal processing in modules

Note8. TMDS outputs are coupled in AC

Note9. Measure signals at the end of 2 meter 50/125um MMGOF

Note10. It is measured as total jitters including Tx and Rx modules under maximum extension, 500 meters with UXGA 60Hz.

Recommended Specifications of Fiber-Optic Cables

Parameters	Conditions	Specifications
Fiber Type		50μm Multi-mode Graded Index Glass Fiber
Modal Bandwidth	$\lambda = 850$ nm	Min. 500 MHz km
Fiber Cable Attenuation	$\lambda = 850$ nm	Max. 2.5dB/km
Extension Distance		10 – 1650ft (500 meter)
No. of Ferrules	SimplexSC*	1 ferrule
Skew		Max. 0.4ns
Insertion Attenuation		Max. 0.5dB
Total Optical Attenuation	In 330 ft (100 meter) extension	Max. 1.5dB

Note*: Some plastic couplers to clamp two LC connectors could not fit in.

Functions

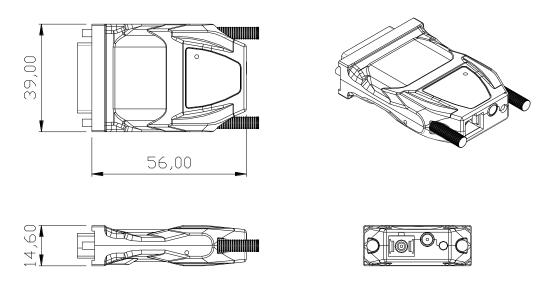
Self-EDID Function

The EDID in a display can be read and restored by just plugging it to the display. This self-EDID programming feature makes the installation of DVFX-100 more easy and flexile at any variable resolution display systems.

- Power Protection Circuit Mode in Transmitter Module

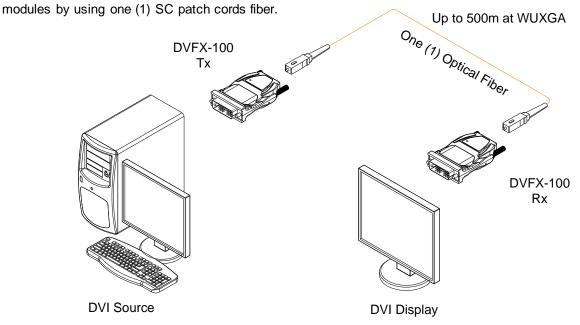
The transmitter (Tx) module of DVFX-100-TR is designed for power protection circuit from conflict of power supply between the external AC/DC power adapter and your DVI source by #14 pin.

We strongly recommend to use external AC/DC adapter for Transmitter (Tx) for stable power supplying. In case of Receiver (Rx), power should be supplied by AC/DC adapter due to no internal power supplying from the displays.


Signal Detect Mode in Receiver Module

It offers optical signal monitoring LED when optical input power is lower than as specified in a certain case, for instance, loosing optical connectors.

Drawing


Dimension [mm]

Note: The transmitter, DVFX-100-T and the receiver, DVFX-100-R have the same mechanical dimensions.

Fiber Connection

The diagram shows the connection of transmitter (Tx; plug in PCs) and receiver (Rx; plug in displays)

Copyright © 2017, All rights reserved by Opticis

21. Apr. 2017

DVI Pin Description

Pin	Symbol	Functional Description
1	CH2-	TMDS Data Signal Channel 2 Negative
2	CH2+	TMDS Data Signal Channel 2 Positive
3	GND	TMDS Data Signal Channel 2/4 Shield
4	N.C.	
5	N.C.	
6	DDC Clock	DDC Clock line for DDC2B communication
7	DDC Data	DDC Data line for DDC2B communication
8	N.C.	
9	CH1-	TMDS Data Signal Channel 1 Negative
10	CH1+	TMDS Data Signal Channel 1 Positive
11	GND	TMDS Data Signal Channel 1/3 Shield
12	N.C.	
13	N.C.	
14	5 V	Main Power Input for Transmitter from Host (Note11)
17		5 V Output for Receiver to monitor
15	GND	Ground
16	Hot plug Detect	Signal is driven by monitor to enable the system to identify the presence of a monitor
17	CH0-	TMDS Data Signal Channel 0 Negative
18	CH0+	TMDS Data Signal Channel 0 Positive
19	GND	TMDS Data Signal Channel 0/5 Shield
20	N.C.	
21	N.C.	
22	GND	TMDS Clock Signal Shield
23	CLK+	TMDS Clock Channel Positive
24	CLK-	TMDS Clock Channel Negative

Note11) The AC-to-DC adapter for transmitter is option for Desk Top PC user.

But Note PC user has to use the AC-to-DC adapter because the pow er of Note PC is not enough to drive DVFX-100 transmitter.

Revision History

Version	date	History	
1.0	2011-10	First released	
1.1	2011-11	Update description	
1.2	2011-12	Change adapter	
1.3	2013-01	Revise supply current, power consumption value	
1.4	2013-09	Addition of certification	
1.5	2014-04	Revise optical power value	
2.0	2017-04	Revise power consumption value	